Scientists at the Wake Forest Institute for Regenerative Medicine (WFIRM) have developed the world’s most sophisticated laboratory model of the human body, creating a system of miniaturized organs that can be used to detect harmful and adverse effects of drugs before they are prescribed to patients.
Using such a system in screening potential pharmaceuticals could have a significant impact on speeding new drugs to market, lowering the cost of clinical trials, and reducing or eliminating animal testing.
The system, developed from funding provided by the Defense Threat Reduction Agency, is built from many human cell types that are combined into human tissues representing a majority of the organs in the human body such as the heart, liver and lungs. Each of these miniature organs are tiny 3D tissue-like structures about one millionth the size of an adult human organ. The system can be used to mimic tissues/organs and can be used as a testing and predicting platform.
“The most important capability of the human organ tissue system is the ability to determine whether or not a drug is toxic to humans very early in development, and its potential use in personalized medicine,” said Anthony Atala, MD, WFIRM director and senior author of the study, which was published in the journal Biofabrication. “Weeding out problematic drugs early in the development or therapy process can literally save billions of dollars and potentially save lives.”